
CS161 Project 2 Final Design Document

Charlotte Chen

August 4, 2025

Overview

This document outlines the design for a secure file sharing and storage system that satisfies the
requirements described in the Project 2 specification. The design provides user authentication,
secure file storage and append, file sharing, and revocation, while defending against both the
Datastore Adversary and the Revoked User Adversary.

1. Data Structures and UUID Strategy

The local data is stored as UUID and marshaled data pairs. While UUID is derived from either
random generation or a deterministic key derivation with HashKDF. Confidentiality is preserved
through symmetric encryption and public-key encryption, and integrity is verified by HMAC and
digital signatures.

2. File Storage and Metadata

In the Datastore, each file is represented by a file pointer, which includes a UUID pointing to
the file metadata, a flag indicating whether the file is shared from another user, a root hash key used
to derive the file key, and related pointers used to track recipients and help recipients decrypt the
file. FileMetadata is the central node for each file, which contains head and tail chunk UUIDs that
point to a list of file chunks. FileChunk is the basic unit of file storage, containing the encrypted
content and a pointer to the next chunk.

3. User Authentication

User authentication is handled by deriving the root key from the password and using it to access
encrypted user data. The root key is derived from the password using Argon2 with a combination
of username and password as the input. The user data is stored in a User struct, which includes
the user’s public and private keys, and a root key randomly generated for file pointer encryption.

4. Multiple Devices Synchronization

All persistent user and file data resides in Datastore. Thus, all User objects generated via GetUser

will pull lastest data from Datastore. Changes on one device are immediately reflected on another
as they reference the same UUIDs.

1



5. File Storage and Retrieval

Each user maps a local filename to FilePointer (encrypted and HMAC’d with user root key).
FilePointer then points to the file metadata UUID. (encrypted and HMAC’d with file root key).
For all shared files, while the file pointer is encrypted with the user’s key, the file metadata and
file nodes are encrypted with the file keys that are available upon invitation acceptance and are
needed to be downloaded each time the file is accessed.

6. Efficient Append Bandwidth

AppendToFile downloads only the tail chunk and appends a new encrypted chunk. It uploads a
file node containing the new chunk and updates the file metadata with the new tail chunk UUID.
On the other hand, it downloads the file metadata, tail chunk, and a shared information pack only
if the file is shared. Thus, the total bandwidth scales only with the size of appended content (n +
small constant).

8. File Sharing Semantics

On CreateInvitation, the sharer:

• Creates a new SharedInfoPointer struct, which points to SharedInfo, encrypted and signed
with recipient’s public key and sign key respectively and SharedInfo, which contains the
location of the file metadata and the file key, encrypted with a unique file key generated by
the sharer.

• Stores a new recipient struct containing the location of the share information pack and the
name of the recipient. The recipient struct is then linked to RecipientListTail at the
FilePointer.

Recipient retrieves and decrypts the invitation in AcceptInvitation, access the SharedInfo, and
store the encryption key, HMAC key, and file metadata UUID in the FilePointer created for the
file with share flag set to true.

9. File Revocation Mechanism

• Owner re-encrypts all file chunks with a new file key

• Generates new UUIDs for each chunk and metadata

• Updates metadata and access list, invalidating old passwords and SharedInfo structs

• Copy the recipient list, update SharedInfo struct for remaining users, and regenerate new
file root key.

Revoked users cannot access new data due to loss of valid keys and UUIDs. They cannot observe
updates since UUIDs and encryption keys change.

Note: A visual diagram of these data structures and their relationships will be included in a
separate page.

2



Figure 1: Data Structures Overview

3


