
Design and Implementation of a 64-Tap 16-Bit FIR
Filter with Dual-Clock Architecture

Charlotte Chen
Department of Electrical Engineering

Columbia University
New York, NY, USA
hc3558@columbia.edu

Abstract—This paper presents a 64-tap 16-bit finite impulse
response (FIR) filter implemented with dual-clock architecture
for real-time digital signal processing. The design achieves 10 kS/s
throughput using a 10 kHz input clock and 1 MHz core clock.
Key features include Q1.15 fixed-point inputs and coefficients,
Q7.9 outputs with rounding and saturation, asynchronous FIFO
with Gray code pointers for clock domain crossing, and a sequen-
tial multiply-accumulate architecture with 48-bit accumulation.
Comprehensive verification against MATLAB reference using
10,000 randomly generated test vectors demonstrates bit-accurate
functionality. Synthesis using Synopsys Design Compiler with 8-
metal 180nm CMOS technology achieves timing closure with total
area of 0.153 mm2, average power consumption of 42.4 µW at
1 MHz core frequency, and energy efficiency of 4.24 nJ/sample.
The critical path delay of 18.67 ns in the MAC datapath provides
98.1% timing margin, validating the design for operation up to
53.6 MHz.

Index Terms—FIR filter, dual-clock architecture, clock domain
crossing, fixed-point arithmetic, VLSI design, low-power DSP

I. INTRODUCTION

Finite impulse response (FIR) filters are fundamental build-
ing blocks in digital signal processing systems, providing lin-
ear phase response and unconditional stability for applications
in audio processing, telecommunications, biomedical instru-
mentation, and software-defined radio [1]. The FIR filtering
operation implements discrete convolution:

y[n] =

N∑
i=0

bi · x[n− i] (1)

where x[n] is the input signal, y[n] is the output, N is the
filter order (number of taps minus one), and bi are the filter
coefficients. A 64-tap filter requires 64 multiply-accumulate
(MAC) operations per output sample, demanding careful ar-
chitectural design to meet real-time processing requirements
while minimizing hardware resources.

Real-time FIR implementation at 10 kS/s presents three key
design challenges. First, computational requirements scale lin-
early with filter length—all 64 MAC operations must complete
within the 100 µs inter-sample period. Second, systems with
multiple asynchronous clock domains require robust synchro-
nization mechanisms to prevent metastability while maintain-
ing data integrity and throughput [3], [4]. Third, fixed-point
arithmetic implementation demands careful analysis of word

lengths, quantization noise, overflow handling, and rounding
schemes to balance numerical accuracy against hardware cost.

This work employs a dual-clock architecture to address
these challenges systematically. The input interface operates
at 10 kHz matching the signal sampling rate, while the core
processing unit runs at 1 MHz. This 100:1 frequency ratio pro-
vides 100 clock cycles per input sample, enabling sequential
MAC implementation with a single hardware multiplier rather
than requiring expensive parallel processing units. The lower
operating frequency also reduces dynamic power consumption
compared to higher-speed architectures.

The key contributions include: (1) a modular five-block
architecture featuring asynchronous FIFO with Gray code
synchronization, coefficient memory, shift register, MAC ALU
with 48-bit accumulation, and FSM controller; (2) compre-
hensive fixed-point implementation using Q1.15 format for
inputs and coefficients, Q2.30 for intermediate accumulation,
and Q7.9 for outputs with proper rounding and saturation;
(3) complete verification methodology including MATLAB
golden reference generation with 10,000 randomized test vec-
tors and bit-accurate RTL simulation; and (4) full synthesis
flow using Synopsys Design Compiler targeting 180nm CMOS
technology with detailed timing, area, and power analysis.

II. SYSTEM ARCHITECTURE

A. Top-Level Organization
The FIR filter employs a dual-clock domain design that

separates the input/output sampling interface from the core
processing logic. The system consists of five primary building
blocks: input FIFO with clock domain crossing synchroniz-
ers, coefficient memory (CMEM), 64-element shift register,
multiply-accumulate ALU with 48-bit accumulator, and finite
state machine controller as shown in Fig. 1.

The interface includes two asynchronous clock domains:
• Clock Domain 1 (clk1): 10 kHz input sampling

clock (100 µs period) driving the input interface sig-
nals din[15:0] and valid_in, and output signals
dout[15:0] and valid_out

• Clock Domain 2 (clk2): 1 MHz core processing clock
(1 µs period) driving internal computation datapath and
control logic

Additional control signals include cin[15:0],
caddr[5:0], and cload for pre-loading the 64 filter

coefficients during initialization, and rstn for active-low
asynchronous reset. All data signals use 16-bit width with
fixed-point formats detailed in Section III.

Fig. 1: FIR Architecture

B. Fixed-Point Number Representation

The design employs Q-format fixed-point arithmetic to
balance dynamic range, precision, and hardware cost:

• Inputs/Coefficients: 16-bit Q1.15 signed format with
1 sign bit, 0 integer bits, and 15 fractional bits. This
represents values in range [−1, 0.999969] with resolution
2−15 ≈ 3.05 × 10−5. The normalized range prevents
accumulator overflow when summing 64 products.

• Products: 16-bit × 16-bit signed multiplication produces
32-bit results in Q2.30 format with 2 sign/integer bits
and 30 fractional bits, providing sufficient precision for
intermediate calculations.

• Accumulator: 48-bit signed accumulator in Q2.30 format
provides 216 = 65536× overflow margin. The theoretical
maximum accumulation is 64× (215 − 1)× (215 − 1) =
2, 130, 640, 896 ≈ 231, requiring at least 32 bits. The 48-
bit implementation provides 16 additional guard bits.

• Output: 16-bit Q7.9 signed format with 7 integer bits and
9 fractional bits represents values in range [−64, 63.998]
with resolution 2−9 ≈ 1.95 × 10−3. The 7 integer bits
accommodate the maximum theoretical output magnitude
of 64×1×1 = 64 when all coefficients and inputs equal
unity.

The conversion from Q2.30 accumulator to Q7.9 output
requires shifting right by 21 bits (30 - 9 = 21) with rounding.
The implementation adds 220 before shifting to perform round-
to-nearest operation.

C. Finite State Machine Controller

The FSM orchestrates MAC operations through five states
operating in the clk2 domain as in Fig. 2:

1) IDLE: Monitors the synchronized input valid signal
(valid_in_core) from the input FIFO. Upon detect-
ing a new input sample, transitions to INIT COMPUTE
state.

2) INIT COMPUTE: Asserts acc_clear to reset the
48-bit accumulator to zero and initializes the tap counter.
This state completes in one clk2 cycle and uncondition-
ally transitions to COMPUTE.

3) COMPUTE: Executes the MAC loop for 64 iterations.
In each cycle, reads the corresponding input sample
x[n−i] from the shift register at address i and coefficient
bi from CMEM at the same address. The ALU computes
the product and accumulates:

acci+1 = acci + (x[n− i]× bi) (2)

The FSM increments the tap counter each cycle. After 64
iterations (when tap counter reaches 66 due to pipeline
delay), transitions to ROUND state.

4) ROUND: Asserts round_enable to trigger conver-
sion of the 48-bit Q2.30 accumulator to 16-bit Q7.9
output format with rounding and saturation. Completes
in one cycle and transitions to OUTPUT.

5) OUTPUT: The rounded result is registered and pre-
sented on dout_reg with dout_valid_pulse as-
serted high for one clk2 cycle. The output FIFO captures
this data and transfers it to clk1 domain. The FSM
returns to IDLE to await the next input sample.

Total latency is 67 clk2 cycles per sample (1 + 64 + 1
+ 1), requiring minimum clk2 frequency of 670 kHz for 10
kS/s throughput. The 1 MHz implementation provides 33 idle
cycles (49% margin) between consecutive samples, improving
timing robustness and allowing potential future throughput
increases.

III. DATAPATH IMPLEMENTATION

A. Clock Domain Crossing with Asynchronous FIFO

1) Input Path Synchronization: The input interface transfers
samples from clk1 (10 kHz) to clk2 (1 MHz) using a two-stage
synchronizer with edge detection:

• Data holding: Input data din[15:0] and control signal
valid_in are registered in clk1 domain to ensure stable
values during clock domain crossing.

• Three-stage synchronizer: The valid_in signal
passes through two back-to-back flip-flops clocked by
clk2 to prevent metastability. The first stage may enter
a metastable state if the input transition occurs near the
clk2 edge, but resolves before the second stage samples
it [3].

• Edge detector: Compares the synchronized signal with
its one-cycle delayed version to generate a single-cycle
pulse (shift_en) in clk2 domain, triggering the shift
register to capture the new sample.

The synchronizer introduces 2-3 clk2 cycles of latency but
ensures reliable data transfer with metastability probability
below 10−12 for typical flip-flop MTBF parameters.

2) Output Path with Gray Code FIFO: The output path uses
an asynchronous FIFO with Gray code pointer synchronization
to transfer results from clk2 to clk1 domain:

Fig. 2: FIR ASM

• FIFO structure: 16-entry circular buffer with separate
write pointer (clk2 domain) and read pointer (clk1 do-
main). Each pointer is 5 bits to handle 16 entries with
wrap-around.

• Gray code encoding: Binary pointers are converted to
Gray code before crossing clock domains. Gray code
ensures only one bit changes per increment, eliminating
multi-bit transition glitches that could cause corruption
[4].

• Pointer synchronization: Gray-coded write pointer
passes through two-stage synchronizer into clk1 domain
for empty detection. Similarly, read pointer synchronizes
into clk2 domain for full detection. This allows safe
pointer comparison across clock domains.

• Valid output generation: The clk1 domain detects new
data by comparing current synchronized write pointer
with previous value. When pointers differ and FIFO is
non-empty, valid_out pulses high and dout[15:0]
presents the read data.

The FIFO depth of 16 entries provides substantial buffering
beyond the minimum requirement, accommodating any tran-
sient clock phase variations or processing jitter.

B. Shift Register and Coefficient Memory

1) 64-Element Shift Register: The shift register stores the
64 most recent input samples for parallel access during MAC
operations:

• Structure: 64 16-bit registers arranged as an addressable
memory with write port and read port

• Write operation: On each shift_en pulse, new sample
enters at position 0, and all previous samples shift toward
position 63 in a single cycle

• Read operation: Parallel read access via 6-bit address
read_addr[5:0] allows FSM to fetch any stored
sample during COMPUTE state

• Implementation: Uses 64 instances of 16-bit flip-flops
(1024 total flip-flops) with multiplexer-based addressing

2) Coefficient Memory (CMEM): CMEM implements a 64-
entry × 16-bit dual-port memory:

• Write port: Supports parallel coefficient loading dur-
ing initialization via cload, caddr[5:0], and
cin[15:0] signals, all operating in clk2 domain

• Read port: Provides sequential read access during MAC
operations using read_addr[5:0] shared with shift
register addressing, ensuring synchronized data retrieval

• Implementation: Register-based memory (not RAM
macro) synthesized from 1024 flip-flops with decoder and
multiplexer logic

• Area cost: CMEM occupies 60,854 µm2 (44.6% of total
area), dominated by storage flip-flops

The shared addressing scheme between shift register and
CMEM simplifies FSM control logic, as incrementing the
tap counter automatically advances both data and coefficient
addresses in lock-step.

C. MAC ALU with 48-Bit Accumulation

The ALU implements the core multiply-accumulate datap-
ath:

1) Multiplier: The 16-bit × 16-bit signed multiplier uses a
Wallace tree architecture synthesized by Design Compiler:

• Input format: Two’s complement Q1.15 signed operands
• Output format: 32-bit Q2.30 signed product
• Implementation: Booth encoding with compressor tree

reduces partial products, followed by final carry-
propagate adder

• Critical path: Synthesis generates 51 CMPR42X1TS
(4:2 compressors) and 44 CMPR32X2TS (3:2 compres-
sors) for parallel reduction

2) Accumulator: The 48-bit accumulator maintains running
sum with overflow protection:

• Clear operation: acc_clear signal (asserted in
INIT COMPUTE) resets accumulator to zero

• Accumulation: When mac_enable is high (during
COMPUTE), sign-extends 32-bit product to 48 bits and
adds to current accumulator value

• Storage: 48 flip-flops registered on clk2 rising edge
• Guard bits: Upper 16 bits prevent overflow during worst-

case accumulation of 64 maximum-magnitude products

3) Rounding and Saturation: Conversion from Q2.30 to
Q7.9 occurs in ROUND state:

acc rounded = acc + 220 (3)

acc shifted = acc rounded >> 21 (4)

output =


32767 if acc shifted > 32767

−32768 if acc shifted < −32768

acc shifted[15 : 0] otherwise
(5)

The rounding constant 220 represents 0.5 LSB of the Q7.9
output format, implementing round-to-nearest-even. Saturation
clamps out-of-range values to ±32767 (representing ±63.998
in Q7.9) to prevent wraparound artifacts.

IV. VERIFICATION METHODOLOGY

A. MATLAB Golden Reference Generation

The verification strategy employs MATLAB to generate
stimulus and expected responses for RTL simulation. The
MATLAB script fir.m performs the following operations:

1) Test Vector Generation:

1) Coefficient generation: 64 random floating-point coef-
ficients uniformly distributed in [−1, 1) are generated.
These are then normalized by dividing by 1.2 ×

∑
|bi|

to ensure the sum of absolute coefficient values remains
below unity, preventing accumulator overflow even with
worst-case correlated inputs.

2) Quantization to Q1.15: Floating-point coefficients are
converted to Q1.15 fixed-point:

bQ1.15
i = round(bfloat

i × 215) (6)

with saturation to the range [−32768, 32767].
3) Input generation: 10,000 random floating-point input

samples uniformly distributed in [−1, 1) are generated
and quantized to Q1.15 using the same procedure.

4) Dequantization: Integer values are converted back to
floating-point for reference calculation:

bref
i = bQ1.15

i /215, x[n]ref = x[n]Q1.15/215 (7)

2) Fixed-Point Reference Model: The MATLAB script im-
plements a bit-accurate fixed-point reference model matching
the RTL implementation:

1) For each output sample n = 1 to 10,000:
• Initialize 48-bit accumulator: acc = int64(0)
• For each tap k = 1 to 64:

idx = n− k + 1

if idx > 0 : product = int64(x[idx])× int64(bk)
acc = acc + product

(8)
• Round and convert to Q7.9:

acc rounded = acc + 220

acc shifted = acc rounded >> 21

y[n] = saturate(acc shifted,−32768, 32767)
(9)

3) File Output: The script generates three hex-formatted
text files:

• coefficients_hex.txt: 64 coefficients in hexadec-
imal

• input_samples_hex.txt: 10,000 input samples in
hexadecimal

• expected_output_hex.txt: 10,000 expected out-
puts in hexadecimal

These files are read by the Verilog testbench for stimulus
application and output comparison.

B. RTL Simulation and Comparison

The Verilog testbench fir_core_tb.v validates the RTL
implementation:

1) Testbench Structure:
1) Clock generation: Independent clock generators for

clk1 (10 kHz) and clk2 (1 MHz) with no phase rela-
tionship, accurately modeling asynchronous clocking.

2) Initialization sequence:
• Assert reset (rstn = 0) for 5 clk2 cycles
• Release reset and wait 10 cycles for stabilization
• Load 64 coefficients sequentially via cload,
caddr, and cin interface

• Wait 10 cycles before beginning input sample injec-
tion

3) Stimulus application: At each clk1 rising edge, read
next input sample from input_samples_hex.txt,
drive onto din[15:0], and assert valid_in for one
clk1 cycle.

4) Output verification: At each clk1 rising edge when
valid_out is high:

• Read next expected value from
expected_output_hex.txt

• Compare with dout[15:0]
• If mismatch: increment error counter and display

diagnostic message
• If match: display confirmation message

5) Statistics reporting: After processing all samples, re-
port total samples processed, total errors, and accuracy
percentage.

2) Verification Results: RTL simulation of 10,000 input
samples achieved through comparison against Matlab gener-
ated data as in Fig. 3:

• Functional correctness: 100% bit-accurate match with
MATLAB reference

• Error count: 0 mismatches out of 10,000 samples
• Clock domain crossing: No metastability events or data

corruption observed
• Throughput verification: Outputs produced at exactly

10 kS/s rate (one output per 100 µs)
• Latency measurement: First output appears 6.77 ms

after first input (67 clk2 cycles + FIFO transfer delay)
The zero-error result validates that fixed-point quantization,

rounding, and saturation logic exactly match the MATLAB
reference model across the full range of random inputs and
coefficients.

Fig. 3: Testbench Report

C. Waveform Analysis

VCD waveform dump confirms:
• FSM operation: Correct state sequencing IDLE →

INIT COMPUTE → COMPUTE (64 cycles) → ROUND
→ OUTPUT → IDLE

• Data flow: Input samples correctly loaded into shift
register, coefficients accessed sequentially from CMEM
as in Fig. 4

• MAC operation: Accumulator increments appropriately
during COMPUTE state

• Output timing: valid_out pulses align with dout
data stability in clk1 domain as in Fig. 5

Fig. 4: FIR Data Input

Fig. 5: FIR Data Output

V. SYNTHESIS RESULTS AND ANALYSIS

A. Synthesis Methodology

The design was synthesized using Synopsys
Design Compiler (version U-2022.12-SP5) targeting
a commercial 180nm CMOS standard cell library
(scx3 cmos 8rf lpvt tt 1p2v 25c). The generated gate-
level netlist is shown in Fig. 6

• Technology: 8-metal layer 180nm low-power CMOS
process

• Operating conditions: Typical corner (TT), 1.2V supply,
25°C junction temperature

• Clock constraints:
– clk1: 100 µs period (10 kHz), 10% uncertainty
– clk2: 1 µs period (1 MHz), 10% uncertainty

• I/O constraints: 50 ps input delay, 50 ps output delay
relative to respective clocks

• Clock domain crossing: False path constraints between
clk1 and clk2 domains

• Optimization: compile_ultra with high effort, area
and power optimization enabled

B. Gate-Level Netlist

The minimum-delay path and maximum-delay timing path
are shown in Fig. 7 and Fig. 8. Table I summarizes the timing
analysis from PrimeTime:

1) Critical Path Analysis: The critical path in clk2 domain
spans from shift register output through multiplier and 48-bit
accumulator:

1) Register output (0.835 ns): Flip-flop clock-to-Q delay
for shift_reg_dout_reg[0]

2) Multiplier logic (2.791 ns): Booth encoder, Wallace tree
compressors (CMPR42X1TS, CMPR32X2TS), and final
carry-propagate adder generate 32-bit product

3) Accumulator adder (14.580 ns): 48-bit ripple-carry
chain dominates timing. The path traverses 22 full-adder
stages (intadd_0_U26 through intadd_0_U5),
each contributing approximately 0.47 ns per stage

Fig. 6: Gate-Level Netlist

TABLE I: Timing Analysis Results

Parameter clk1 Domain clk2 Domain
(10 kHz) (1 MHz)

Clock period 100.0 µs 1000.0 ns
Critical path delay 0.358 ns 18.670 ns
Setup slack 99.641 µs 980.866 ns
Hold slack 0.409 ns 0.073 ns
Timing margin 99.64% 98.13%
Max frequency – 53.56 MHz

Critical Path (clk2)

shift reg dout reg[0] → alu accumulator reg[47]
Path breakdown:

Register Q output 0.835 ns
Multiplier (Booth + Wallace tree) 2.791 ns
Accumulator (48-bit adder) 14.580 ns
Register D setup 0.464 ns

4) Setup time (0.464 ns): Required setup time for destina-
tion register alu_accumulator_reg[47]

The 48-bit accumulator is implemented as a ripple-carry
adder rather than carry-lookahead to minimize area, trading
speed for silicon efficiency. At 1 MHz target frequency, the
design has 98.1% timing slack, providing substantial margin
for process, voltage, and temperature (PVT) variations.

2) Maximum Operating Frequency: The critical path delay
of 18.67 ns limits maximum clk2 frequency to:

fmax =
1

18.67 ns
= 53.56 MHz (10)

This enables potential throughput scaling to 53.56 MHz /
67 cycles = 799 kS/s, approximately 80× the current 10 kS/s
specification, providing significant design headroom for future
requirements.

C. Area Breakdown

Table II presents the area utilization from synthesis:

Fig. 7: Minimum-Delay Path

TABLE II: Area Breakdown

Component Area (µm2) Percentage

Total Design 152,971 100.0%

Coefficient Memory (CMEM) 60,854 39.8%
Combinational Logic 35,484 23.2%
Sequential (non-CMEM) 56,633 37.0%

Combinational breakdown:
AO22XLTS (1285 inst.) 12,953 8.5%
AOI22X1TS (794 inst.) 6,860 4.5%
CLKBUFX2TS (1322 inst.) 7,615 5.0%
Compressors (CMPR) 4,490 2.9%
Inverters (INVX2TS) 5,067 3.3%
Other combinational 3,499 2.3%

Sequential breakdown (excluding CMEM):
DFFRXLTS (1408 inst.) 46,633 30.5%
DFFRX1TS (45 inst.) 1,490 1.0%
DFFRX2TS (8 inst.) 265 0.2%
Other sequential 8,245 5.4%

Functional blocks:
Shift Register (64×16b) ∼22,000 14.4%
CMEM (64×16b) 60,854 39.8%
MAC ALU ∼18,000 11.8%
FIFO (Input + Output) ∼12,000 7.8%
FSM + Control Logic ∼8,000 5.2%
Interconnect & Buffers ∼32,117 21.0%

1) Key Observations:

• Memory dominance: CMEM accounts for 39.8% of total
area, reflecting storage-intensive nature of FIR filters.
Combined with shift register (14.4%), memory structures
consume 54.2% of silicon.

• Sequential vs. combinational: Sequential elements
(93.8% including CMEM) dominate over combinational
logic (23.2%), characteristic of register-heavy datapath
designs.

• Flip-flop count: 1,461 flip-flops total (excluding
CMEM’s 1,024): 64×16 shift register, 48-bit accumu-

Fig. 8: Minimum-Delay Path

lator, 32-bit product register, FSM state registers, FIFO
pointers, and pipeline registers.

• MAC ALU efficiency: Multiplier and accumulator logic
occupy only 11.8% despite being computational core,
demonstrating area efficiency of sequential architecture
versus parallel alternatives.

• Clock tree overhead: 1,322 clock buffers (CLK-
BUFX2TS) consume 7,615 µm2 (5.0%) for distributing
clk1 and clk2 throughout the design with acceptable skew.

In 180nm technology with unit area = 0.432 µm2 per gate,
total area of 152,971 µm2 equals:

Area = 152, 971 µm2 = 0.153 mm2 (11)

D. Power Analysis

PrimeTime power analysis using activity file from RTL
simulation reports, referring to automated generated report Fig.
9:

1) Energy Efficiency: Energy per sample calculation at 10
kS/s throughput:

Esample =
Pavg

fthroughput
=

42.42 µW
10, 000 S/s

= 4.242 nJ/sample (12)

2) Power Distribution Analysis:
• Clock network dominance: 90.5% of power consumed

by clock distribution network serving 1,461 flip-flops

TABLE III: Power Consumption Breakdown

Component Power (µW) Percentage

Total Average Power 42.42 100.0%

Clock network 38.40 90.5%
Register internal 0.52 1.2%
Combinational internal 2.24 5.3%
Combinational switching 0.99 2.3%
Net switching 1.08 2.5%
Leakage 0.17 0.4%

Breakdown by type:
Cell internal power 41.17 97.1%
Net switching power 1.08 2.5%
Cell leakage power 0.17 0.4%

Peak power: 212.7 mW @ 1.487 s
Glitching power: 0.017 µW 0.04%

across two clock domains. This reflects the 1 MHz clk2
toggling rate and global clock tree routing.

• Dynamic vs. leakage: Dynamic power (97.6%) over-
whelmingly exceeds leakage power (0.4%), expected
in 180nm technology at 1.2V supply. Leakage would
become more significant in advanced nodes.

• Low combinational switching: Only 2.3% of power in
combinational switching indicates efficient use of gated
logic and sparse activity in MAC datapath—most gates
remain inactive during any given cycle.

• CMEM contribution: Hierarchical report shows CMEM
consumes 16.7 µW (39.4% of total), consistent with its
area fraction. Clock gating CMEM during IDLE state
could reduce power by ∼40%.

• Peak vs. average: Peak power of 212.7 mW occurs
during coefficient loading phase when all CMEM entries
update simultaneously. Average power during normal
operation is 5000× lower, indicating highly non-uniform
activity profile suitable for power management.

E. Comparison with Design Alternatives

TABLE IV: Architecture Comparison

Architecture Area Throughput Energy
(mm2) (kS/s) (nJ/S)

This work (Sequential) 0.153 10 4.24
Parallel-2 (2 MACs) ∼0.21 20 ∼6.0
Parallel-4 (4 MACs) ∼0.30 40 ∼9.0
Parallel-8 (8 MACs) ∼0.48 80 ∼15.0

Parallel architectures instantiate multiple MAC units for
simultaneous computation:

Throughputparallel = k × Throughputseq (13)

where k is the number of MAC units. However, area and power
scale approximately linearly with k, while energy per sample
increases due to:

• Higher clock frequency requirements for multi-cycle
MAC operations

Fig. 9: Time-Based Power Report

• Increased interconnect capacitance for parallel data dis-
tribution

• Additional control logic complexity

For the 10 kS/s specification, sequential architecture pro-
vides optimal area and energy efficiency. Parallel implemen-
tations would be justified only for throughput requirements
exceeding 100 kS/s.

VI. CONCLUSION

This paper presented a complete 64-tap 16-bit FIR filter
design with dual-clock architecture for real-time digital sig-
nal processing at 10 kS/s throughput. The implementation
successfully addresses the challenges of computational com-
plexity, asynchronous clock domain crossing, and fixed-point
arithmetic precision through a modular five-block architecture
synthesized in 180nm CMOS technology.

A. Key Achievements

• Functional verification: 100% bit-accurate match with
MATLAB reference across 10,000 randomized test vec-
tors, validating fixed-point implementation and clock
domain crossing reliability

• Timing closure: Critical path delay of 18.67 ns in 1
MHz clk2 domain provides 98.1% slack margin, enabling
operation up to 53.6 MHz for 80× throughput scaling
potential

• Area efficiency: Total silicon area of 0.153 mm2 with
sequential MAC architecture minimizes hardware cost
compared to parallel alternatives

• Power efficiency: Average power consumption of 42.4
µW yields energy efficiency of 4.24 nJ/sample, domi-
nated by clock network distribution (90.5%)

• Clock domain crossing: Three-stage synchronizer with
edge detection and Gray code FIFO with dual-clock
pointers ensures reliable data transfer with zero corrup-
tion events observed in verification

• Fixed-point precision: Q1.15 inputs/coefficients, Q2.30
intermediate accumulation, and Q7.9 outputs with round-
ing and saturation balance dynamic range and quantiza-
tion noise

B. Design Trade-offs

The sequential MAC architecture makes explicit trade-offs:

• Throughput vs. area: Single multiplier limits throughput
to 799 kS/s maximum but minimizes area to 0.153 mm2

versus >0.30 mm2 for 4-way parallel implementations
• Speed vs. power: 1 MHz core clock reduces power to

42.4 µW but constrains throughput; higher frequencies
enable faster processing at increased power cost

• Precision vs. hardware: 48-bit accumulator provides 16
guard bits exceeding theoretical requirements but simpli-
fies overflow handling and improves design robustness

C. Future Work

Several optimization directions could extend this work:

1) Power optimization: Clock gating CMEM during IDLE
state could reduce average power by ∼40%. Additional
clock gating of shift register and multiplier when not in
COMPUTE state would further reduce dynamic power.

2) Adaptive coefficient loading: Run-time coefficient up-
dates via streaming interface would enable adaptive fil-
tering, multi-rate processing, and filter bank applications
without core redesign.

3) Throughput scaling: The 53.6 MHz maximum fre-
quency and modular architecture support scaling to 799
kS/s by increasing clk2 frequency, or deploying multiple
parallel cores for multi-channel processing.

4) Technology portability: Retargeting to advanced nodes
(65nm, 40nm, 28nm) would reduce area by 4-10× and
enable sub-threshold operation for ultra-low-power IoT
applications at reduced throughput.

5) Accumulator optimization: Reducing to 40-bit accu-
mulator (still providing 8 guard bits) would save ∼17%
accumulator area with negligible overflow risk for nor-
malized coefficient sets.

The modular architecture, comprehensive verification
methodology, and complete synthesis results presented in this
work provide a foundation for practical FIR filter implemen-
tations in embedded DSP systems, audio/video processing,
telecommunications, and edge computing applications where
resource efficiency and numerical accuracy are critical design
constraints.

REFERENCES

[1] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
3rd ed. Upper Saddle River, NJ: Prentice Hall, 2009.

[2] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach,
4th ed. New York: McGraw-Hill, 2011.

[3] C. E. Cummings, “Synthesis and scripting techniques for designing
multi-asynchronous clock designs,” in Proc. SNUG, San Jose, CA, USA,
2001, pp. 1–48.

[4] W. J. Dally and J. W. Poulton, Digital Systems Engineering. Cambridge,
U.K.: Cambridge Univ. Press, 1998.

[5] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1983.

