CSEE4824 Final Project Report

Charlotte Chen (HC3558), Jill Kang (JK4491)
Tianyun Huang (TH3116), and Yu Jia (YJ2839)

December 5, 2024

Introduction

In this project, we explored the performance of four different sorting algorithms: Radix Sort, Quick Sort,
Merge Sort, and Tim Sort over 5GB 32 bit integers over two different processors. We evaluated the
change of performance under different optimization levels and the cost-effectiveness of each configuration
and implementation.

We choose two processors to execute the task: Processor 1, a general-purpose CPU and Processor 2 is

a high-performance CPU. The specific parameters of the two processors are shown in the table below.

Feature Processor 1 (nl-standard-1) Processor 2 (c4-standard-2)
Machine Type nl-standard-1 c4-standard-2

CPU Platform Intel Haswell Intel Emerald Rapids
Threads per Core 1 2

Cores per Socket 1 2

L1 Cache 32 KiB 48 KiB

L2 Cache 256 KiB 2 MiB

L3 Cache 45 MiB 260 MiB

Monthly Estimate $26.27 $74.11

Table 1: Comparison of Two Machine Configurations

Methodology

We randomly generate 5GB of 32-bit integers and run the naive and optimized versions of the four sorting
algorithms on the two processors to compare their performance and compute the cost-effectiveness of each

configuration. Four sorting algorithms are listed as follows:

Advantages of each Sorting Algorithm

e Merge Sort

CSEE4824 Final Project Report December 5, 2024

Best Time Average Time Worst Time Space

Sorting Algorithm Stability Co

Complexity = Complexity Complexity mplexity
Merge Sort O(nlogn) O(nlogn) O(nlogn) Yes O(n)
Quick Sort O(nlogn) O(nlogn) O(n?) Yes O(logn)
Radix Sort O(n - k) O(n - k) O(n - k) Yes O(n+ k)
Tim Sort O(n) O(nlogn) O(nlogn) Yes O(n)

Table 2: Comparison of Sorting Algorithms

— Algorithm: Merge Sort splits the data into smaller subarrays, sorts these subarrays, and then

merges them back together in sorted order, making sorting efficient.

— Memory Locality: During merging, it has sequentially accesses subarrays, exhibiting good
spatial locality. As recursive calls repeatedly access overlapping regions of the original array, it

also has good temporal locality.

— Data Structure: Merge Sort’s divide-and-conquer approach fits naturally with arrays, leading

to efficient memory access patterns.
e Quick Sort
— Algorithm: Quick Sort selects a pivot, partitions the array into two subarrays, and recursively

sorts these subarrays, achieving O(nlogn) time complexity and O(logn) space complexity.

— Memory Locality: Quick Sort exhibits good spatial locality by working on contiguous seg-

ments of the array during partitioning.
— Data Structure: Quick Sort’s in-place partitioning mechanism is highly efficient for arrays,
minimizing additional memory usage.
e Radix Sort
— Algorithm: Radix Sort processes the input numbers digit by digit from LSD, and uses counting
sort at each step to sort the numbers by the current digit, achieving linear time complexity.

— Memory Locality: Radix Sort processes data in a linear pass through the input for each digit,

which results in good spatial locality.

— Data Structure: Radix Sort works best on arrays where the keys have a fixed length. Its

non-comparative nature makes it ideal for data that can be sorted by fixed-width keys.
e Tim Sort

— Algorithm: Tim Sort is a hybrid sorting algorithm that combines the advantages of Merge
Sort and Insertion Sort. In our implementation, we compute the optimal run size based on the
input size.

— Memory Locality: Tim Sort optimizes memory locality by using Insertion Sort for small runs,

which operates on contiguous elements in memory.

— Data Structure: Tim Sort is designed for arrays and takes advantage of pre-existing order in

the data, leading to perfound performance in cache access.

CSEE4824 Final Project Report December 5, 2024

Optimizations Method
1. Parallel Optimizations with OpenMP

e We noticed that in each of the four sorting algorithms, we need to compare a large amount
of numbers in a array with contingent indexes(in tim sort and merge sort) and multiple loops
for different portion of data (radix sort). Thus, we ultized OpenMP directives to parallelize
the comparison process. The effectiveness of such multi-threads instructions depends on the
number of threads available on the processor. Additionally, we have to protect the shared data

chunk from racing condition, which will lead to overhead and complexity.
2. AVX2 Manual Optimization

e Similar to the parallel optimization, we ultized AVX2 instructions to speed up the load and
store process of contiguous data in the array. With intrinsic functions provided by the compiler,
we can load 8 32-bit integers, compare them, and store the result in one instructions. This will

largely reduce the time used in load and store, leading to significant improvement in performance.
3. Algorithm level Optimization

e We also optimized the algorithm itself to improve the performance. In tim sort, we used binary
search for the correct position of the key, reduced the complexity from O(n) to O(logn). In
quick sort, we used the median of three pivot selection to reduce the worst case time complexity
from O(n?) to O(nlogn).

e Function and data Structure optimization is also applied. We used memory write/read instead
of array access to reduce the time used in memory access. We also implemented a min-heap to
merge the sorted chunks into final output. This leads to a O(n) time complexity in merge step,

with a O(1) space complexity.

Results

Implemented on E2

As shown in Figure [I}this is the runtime of the optimized four algorithms on Processorl.

Implemented on C4

As shown in Figure [2Jthis is the runtime of the optimized four algorithms on Processor2.

Naive Implementation

We run the naive implementation of the four algorithms on Processorl with simple merge chunk function.

The results are shown in following table.

CSEE4824 Final Project Report December 5, 2024

$./quick

$./radix true

Total sorting t
Sorting complete! output saved to sorted integers.bin

(a) Quick Sort on E2

hc3558@instance-20241130-203341: $./merge
There are 5 chunks

Chunk @ sorted in 45.79 seconds.

Chunk 1 sorted in 53.31 seconds.

Chunk 2 sorted in 46.39 seconds.

Chunk 3 sorted in 49.34 seconds.

Chunk 4 sorted in 50.22 seconds.

Total sorting time: 389.75 seconds

Sorting complete! Output saved to sorted integers.bin

(c) Merge Sort on E2 (d) Tim Sort on E2
Figure 1: Execution Time of Sorting Algorithms on E2 Instance

seconds.
hunk 3 i 5 seconds.
hunk 1 i 5 seconds.
hunk 4 i .61 seconds.
hunk 2 r i . seconds.

orting complete! Output saved to sorted_integers.bin

s
5
5.
5
s

ng time onds.
Sorting comple tput saved to /mat/mewdisk/sorted integers.bin

sorted in
sorted in

sorted in
Chunk 2 sorted in
sorting time ds. Total sorting time: 160. nds.
Sorting complete! Output saved to sorted integers.bin Sorting complete! Cutput saved to sorted integers.bin

(c) Merge Sort on C4 (d) Tim Sort on C4
Figure 2: Execution Time of Sorting Algorithms on C4 Instance

Algorithm Quick Sort | Radix Sort | Merge Sort | Tim Sort
Execution Time (s) 2140.6 2389.7 1960.8 2127.2

E2 Speedup 4.16 4.71 5.06 4.37

C4 Speedup 12.44 11.48 8.34 13.29

Table 3: Execution Time and Speedup

Cost-Effectiveness

From the performance results, we can observe that Tim Sort using AVX-256 optimization on Processor
2 achieves the fastest execution time. The total execution time for sorting and merging 5GB is the shortest
at 160.30 seconds.

Next, the cost-effectiveness of each configuration is evaluated as follows:

Price per hour

Cost per second =
P 3600 x Total execution time (seconds)

For AVX-256 on Processor 2, with a price per hour of $0.10:

0.1
= — %x160.30 = 4.4 x 1073
Cost per second 3600 x 160.30 x 10

CSEE4824 Final Project Report December 5, 2024

For Auto-Optimized on Processor 1, with a price per hour of $0.04:

0.04
Cost d=—"—x389.75=4.33 x 1073
OST per secon 3600 X X

From these calculations, we can see that Tim Sort on AVX-256 on Processor 2 is the fastest, and

it also offers the best cost-performance ratio.

Performance of Sorting Algorithms (1G and 5G)

Metrics

500 E2_1G
W C41G
B E2 5G
mm C4 5G

400

300}

2001

Performance Metrics

100

Tim
Merge
Radix
Quick

Sorting Algorithms

Figure 3: sort performance

Conclusion

e Different algorithms are suited for different data scales: For example, quick sort is the fastest
for 1G-sized data but becomes the slowest for 5G-sized data. This is because its partitioning and
recursive nature make it time-consuming for large-scale data. In contrast, the multiple passes and

additional memory overhead of Radix sort make it more suitable for smaller-scale data.

e Multi-threaded processors improve performance: Due to C4 utilizing two threads, its pro-

cessing time is at least halved compared to E2, demonstrating the benefit of parallelism.

e Programs with multiple sequential array traversals benefit more from SIMD operations:
Both quick sort and radix sort show significant performance improvements when SIMD operations
are added. This is likely because these algorithms require multiple array traversals and thus gain

more from optimized memory access patterns.

CSEE4824 Final Project Report December 5, 2024

A Appendix

Work Log
Date Time Task Collaborator(s)

2024-11-20 | 17:00 - 19:00 | Discuss the topic in a meeting. All
2024-11-21 | 21:00 - 20:00 | Set up the environment. T.Y. Huang, Y. Jia
2024-11-23 | 15:00 - 17:00 | Finish the Radix Sort Baseline. C. Chen, J. Kang
2024-11-24 | 18:00 - 22:00 | Finish the Quik Sort Baseline. Y. Jia
2024-11-26 | 11:00 - 20:00 | Working on the optimization C. Chen, T.Y. Huang
2024-11-27 | 15:00 - 18:00 | Complete the optimization. T.Y. Huang
2024-11-28 | 17:00 - 20:00 | Modify the code in the merge chunk section. C. Chen
2024-12-1 | 17:00 - 20:00 | Complete the report. All

Table 4: Work log documenting project progress.

Folder Structure

Our project folder is structured as follows:

+-- code

| +-- hw4_merge_sort.c // Merge Sort driver program

| +-- hwé4_quick_sort.c // Quick Sort driver program

| +-- hwé4_radix_sort.c // Radix Sort driver program

| +-- hw4_tim_sort.c // Tim Sort driver program

| +-- chunk.c

// The sort chunk function divides a large file into multiple chunks,
// reads each chunk into memory, sorts it, and stores the sorted result in separate files.
| +-- chunk.h

| +-- sort.c

// Implementing four different sorting algorithms.

| +-- sort.h

| +-- testfile.py

// Generating a file with random integers that is 5GB in size.

| +-- testoutput.py

// Verifying that the output file is sorted correctly.

| +-- Makefile

// Makefile for compiling the four sorting algorithms.

+-— report

| +-- report.tex

+-- .gitignore

CSEE4824 Final Project Report

December 5, 2024

Scripts

1. Data Generation

#!/bin/bash

This script generates a file with random integers that is 5GB in size.

Since I used a text file as output,

the size of the file is substantially larger than 5GB.

Thus, it takes a while to generate the file.
Author: Charlotte Chen

import random

target_size_gb = 0.01

target_size_bytes = target_size_gb * 1024%x3

num_integers = int(target_size_bytes // 4)

use_bin = True # Set to True for binary output

output_file_1 = "random_integers_10MB.txt"

output_file_2 = "random_integers_10MB.bin"

output_file = output_file_2 if use_bin else output_file_1

print(

f"Generating {num_integers:,} integers to create a {target_size_gb}GB file...")

if use_bin:
print (f"Writing binary file: {output_filel}")
with open(output_file, "wb") as f:
for _ in range(num_integers):

random_int = random.randint(0, 2%*32 - 1)

f.write(random_int.to_bytes(4, byteorder="little"))

else:
print (f"Writing text file: {output_filel}")
with open(output_file, "w") as f:

for _ in range(num_integers):

CSEE4824 Final Project Report December 5, 2024

random_int = random.randint(0, 2%*32 - 1)
f.write(f"{random_int}\n")

print (f"File ’{output_file}’ with size {target_size_gb}GB has been created.")

2. Output Verification

#!/bin/bash

This script verifies that the output file is sorted correctly.

The memory usage of this script is 0(1) because it only reads one element at a time.
Please run this script with the command: python verify_sort.py <sorted_file>.

The script supports both text and binary formats.

Author: Charlotte Chen

use_bin = False # Set to True if the output file is binary

def verify_sorted_text_file(filename):
"""Verifies a text-based sorted file."""
try:
with open(filename, "r") as file:

prev = int(file.readline().strip())

for line in file:

curr = int(line.strip())

if curr < prev:
print(
f"Error: File is not sorted. Found {prev} before {curr}.")

return False
prev = curr

print("File is sorted correctly.")
return True
except Exception as e:
print (f"An error occurred while processing the text file: {e}")

return False

CSEE4824 Final Project Report December 5, 2024

def verify_sorted_binary_file(filename):
"""Verifies a binary-based sorted file."""
try:
with open(filename, "rb") as file:
prev = int.from_bytes(

file.read(4), byteorder="little", signed=True)

while True:
data = file.read(4)
if not data:

break

curr = int.from_bytes(data, byteorder="little", signed=True)
if curr < prev:
print(
f"Error: File is not sorted. Found {prev} before {curr}.")

return False
prev = curr

print("File is sorted correctly.")
return True
except Exception as e:
print (f"An error occurred while processing the binary file: {e}")

return False

if __name__ == "__main__":

import sys

if len(sys.argv) != 3:
print ("Usage: python testoutput.py <sorted_file> <flag>(txt/binary)")
sys.exit (1)

filename = sys.argv[1]
flag = sys.argv[2].lower()
if flag == "txt":

use_bin = False
elif flag == "binary":

use_bin = True

CSEE4824 Final Project Report

December 5, 2024

else:
print("Invalid flag. Please enter ’txt’ or ’binary’.")

sys.exit (1)

if use_bin:

print("Verifying binary file...")

result = verify_sorted_binary_file(filename)
else:

print ("Verifying txt file...")

result = verify_sorted_text_file(filename)

if result:
print ("Test passed: The file is sorted.")
sys.exit(0)

else:
print("Test failed: The file is not sorted.")
sys.exit (1)

3. Makefile
Compiler
CC = clang

Compiler Flags
CFLAGS = -fopenmp -03 -march=native -mavx2 -g

Source Files
QUICK_SRC = hw4_quick_sort.c chunk.c sort.c
TIM_SRC = hw4_tim_sort.c chunk.c sort.c

RADIX_SRC = hw4_radix_sort.c chunk.c sort.c
MERGE_SRC = hw4_merge_sort.c chunk.c sort.c
Targets

QUICK_TARGET = quick
TIM_TARGET = tim

RADIX_TARGET
MERGE_TARGET

radix

merge

#
Build Rules

10

CSEE4824 Final Project Report December 5, 2024

all: $(QUICK_TARGET) $(TIM_TARGET) $(RADIX_TARGET) $(MERGE_TARGET)

$ (QUICK_TARGET) : $(QUICK_SRC)
$(CC) $(CFLAGS) -o $0@ $~

$(TIM_TARGET) : $(TIM_SRC)
$(CC) $(CFLAGS) -o $0@ $~

$ (RADIX_TARGET) : $(RADIX_SRC)
$(CC) $(CFLAGS) -0 $@ $~

$ (MERGE_TARGET) : $(MERGE_SRC)

$(CC) $(CFLAGS) -o $0@ $~

Clean

clean:
erm -f $(QUICK_TARGET) $(TIM_TARGET) $(RADIX_TARGET) $(MERGE_TARGET) chunk_*.bin sorted_intes
@echo "Cleaned up build files and chunk files."

11

	Appendix

